🔗 Nanoscale Vacuum-Channel Transistor

🔗 Physics

A nanoscale vacuum-channel transistor (NVCT) is a theoretically visioned transistor in which the electron transport medium is a vacuum. In a traditional solid-state transistor, a semiconductor channel exists between the source and the drain, and the current flows through the semiconductor. However, in a nanoscale vacuum-channel transistor, no material exists between the source and the drain, and therefore, the current flows through the vacuum. However, experimental realization of such a transistor has not been demonstrated.

Theoretically, a vacuum-channel transistor is expected to operate faster than a traditional solid-state transistor, and have higher power output. Moreover, vacuum-channel transistors are expected to operate at higher temperature and radiation level than a traditional transistor making them suitable for space application.

The development of vacuum-channel transistors is still at a very early research stage, and there are only limited study in recent literature such as vertical field-emitter vacuum-channel transistor, gate-insulated planar electrodes vacuum-channel transistor, vertical vacuum-channel transistor, and all-around gate vacuum-channel transistor.

Discussed on