🔗 Extreme Learning Machine

🔗 Statistics

Extreme learning machines are feedforward neural networks for classification, regression, clustering, sparse approximation, compression and feature learning with a single layer or multiple layers of hidden nodes, where the parameters of hidden nodes (not just the weights connecting inputs to hidden nodes) need not be tuned. These hidden nodes can be randomly assigned and never updated (i.e. they are random projection but with nonlinear transforms), or can be inherited from their ancestors without being changed. In most cases, the output weights of hidden nodes are usually learned in a single step, which essentially amounts to learning a linear model. The name "extreme learning machine" (ELM) was given to such models by its main inventor Guang-Bin Huang.

According to their creators, these models are able to produce good generalization performance and learn thousands of times faster than networks trained using backpropagation. In literature, it also shows that these models can outperform support vector machines (SVM) and SVM provides suboptimal solutions in both classification and regression applications.

Discussed on