๐Ÿ”— Bernoulli number

๐Ÿ”— Mathematics

In mathematics, the Bernoulli numbers Bn are a sequence of rational numbers which occur frequently in number theory. The Bernoulli numbers appear in (and can be defined by) the Taylor series expansions of the tangent and hyperbolic tangent functions, in Faulhaber's formula for the sum of m-th powers of the first n positive integers, in the Eulerโ€“Maclaurin formula, and in expressions for certain values of the Riemann zeta function.

The values of the first 20 Bernoulli numbers are given in the adjacent table. Two conventions are used in the literature, denoted here by B n โˆ’ {\displaystyle B_{n}^{-{}}} and B n + {\displaystyle B_{n}^{+{}}} ; they differ only for n = 1, where B 1 โˆ’ = โˆ’ 1 / 2 {\displaystyle B_{1}^{-{}}=-1/2} and B 1 + = + 1 / 2 {\displaystyle B_{1}^{+{}}=+1/2} . For every odd n > 1, Bn = 0. For every even n > 0, Bn is negative if n is divisible by 4 and positive otherwise. The Bernoulli numbers are special values of the Bernoulli polynomials B n ( x ) {\displaystyle B_{n}(x)} , with B n โˆ’ = B n ( 0 ) {\displaystyle B_{n}^{-{}}=B_{n}(0)} and B n + = B n ( 1 ) {\displaystyle B_{n}^{+}=B_{n}(1)} (Weisstein 2016).

The Bernoulli numbers were discovered around the same time by the Swiss mathematician Jacob Bernoulli, after whom they are named, and independently by Japanese mathematician Seki Kลwa. Seki's discovery was posthumously published in 1712 (Selin 1997, p.ย 891; Smith & Mikami 1914, p.ย 108) in his work Katsuyo Sampo; Bernoulli's, also posthumously, in his Ars Conjectandi of 1713. Ada Lovelace's note G on the Analytical Engine from 1842 describes an algorithm for generating Bernoulli numbers with Babbage's machine (Menabrea 1842, Note G). As a result, the Bernoulli numbers have the distinction of being the subject of the first published complex computer program.