๐ Casimir Effect
In quantum field theory, the Casimir effect and the CasimirโPolder force are physical forces arising from a quantized field. They are named after the Dutch physicist Hendrik Casimir who predicted them in 1948.
The Casimir effect can be understood by the idea that the presence of conducting metals and dielectrics alters the vacuum expectation value of the energy of the second quantized electromagnetic field. Since the value of this energy depends on the shapes and positions of the conductors and dielectrics, the Casimir effect manifests itself as a force between such objects.
Any medium supporting oscillations has an analogue of the Casimir effect. For example, beads on a string as well as plates submerged in turbulent water or gas illustrate the Casimir force.
In modern theoretical physics, the Casimir effect plays an important role in the chiral bag model of the nucleon; in applied physics it is significant in some aspects of emerging microtechnologies and nanotechnologies.
Discussed on
- "Casimir Effect" | 2014-08-03 | 29 Upvotes 2 Comments