🔗 Kullback–Leibler Divergence

🔗 Mathematics 🔗 Physics 🔗 Statistics

In mathematical statistics, the Kullback–Leibler divergence (also called relative entropy and I-divergence), denoted D KL ( P ∥ Q ) {\displaystyle D_{\text{KL}}(P\parallel Q)} , is a type of statistical distance: a measure of how one probability distribution P is different from a second, reference probability distribution Q. A simple interpretation of the KL divergence of P from Q is the expected excess surprise from using Q as a model when the actual distribution is P. While it is a distance, it is not a metric, the most familiar type of distance: it is not symmetric in the two distributions (in contrast to variation of information), and does not satisfy the triangle inequality. Instead, in terms of information geometry, it is a type of divergence, a generalization of squared distance, and for certain classes of distributions (notably an exponential family), it satisfies a generalized Pythagorean theorem (which applies to squared distances).

In the simple case, a relative entropy of 0 indicates that the two distributions in question have identical quantities of information. Relative entropy is a nonnegative function of two distributions or measures. It has diverse applications, both theoretical, such as characterizing the relative (Shannon) entropy in information systems, randomness in continuous time-series, and information gain when comparing statistical models of inference; and practical, such as applied statistics, fluid mechanics, neuroscience and bioinformatics.

Discussed on