๐Ÿ”— Kalman Filter

๐Ÿ”— Mathematics ๐Ÿ”— Statistics ๐Ÿ”— Systems ๐Ÿ”— Robotics ๐Ÿ”— Systems/Control theory

In statistics and control theory, Kalman filtering, also known as linear quadratic estimation (LQE), is an algorithm that uses a series of measurements observed over time, containing statistical noise and other inaccuracies, and produces estimates of unknown variables that tend to be more accurate than those based on a single measurement alone, by estimating a joint probability distribution over the variables for each timeframe. The filter is named after Rudolf E. Kรกlmรกn, one of the primary developers of its theory.

The Kalman filter has numerous applications in technology. A common application is for guidance, navigation, and control of vehicles, particularly aircraft, spacecraft and dynamically positioned ships. Furthermore, the Kalman filter is a widely applied concept in time series analysis used in fields such as signal processing and econometrics. Kalman filters also are one of the main topics in the field of robotic motion planning and control and can be used in trajectory optimization. The Kalman filter also works for modeling the central nervous system's control of movement. Due to the time delay between issuing motor commands and receiving sensory feedback, use of the Kalman filter supports a realistic model for making estimates of the current state of the motor system and issuing updated commands.

The algorithm works in a two-step process. In the prediction step, the Kalman filter produces estimates of the current state variables, along with their uncertainties. Once the outcome of the next measurement (necessarily corrupted with some amount of error, including random noise) is observed, these estimates are updated using a weighted average, with more weight being given to estimates with higher certainty. The algorithm is recursive. It can run in real time, using only the present input measurements and the previously calculated state and its uncertainty matrix; no additional past information is required.

Optimality of the Kalman filter assumes that the errors are Gaussian. In the words of Rudolf E. Kรกlmรกn: "In summary, the following assumptions are made about random processes: Physical random phenomena may be thought of as due to primary random sources exciting dynamic systems. The primary sources are assumed to be independent gaussian random processes with zero mean; the dynamic systems will be linear." Though regardless of Gaussianity, if the process and measurement covariances are known, the Kalman filter is the best possible linear estimator in the minimum mean-square-error sense.

Extensions and generalizations to the method have also been developed, such as the extended Kalman filter and the unscented Kalman filter which work on nonlinear systems. The underlying model is a hidden Markov model where the state space of the latent variables is continuous and all latent and observed variables have Gaussian distributions. Also, Kalman filter has been successfully used in multi-sensor fusion, and distributed sensor networks to develop distributed or consensus Kalman filter.

Discussed on