🔗 1, 2, 4, 8, 16, 31

🔗 Mathematics

In geometry, the problem of dividing a circle into areas by means of an inscribed polygon with n sides in such a way as to maximise the number of areas created by the edges and diagonals, sometimes called Moser's circle problem, has a solution by an inductive method. The greatest possible number of regions, rG = ( n
4
 ) + ( n
2
 ) + 1
, giving the sequence 1, 2, 4, 8, 16, 31, 57, 99, 163, 256, ... (OEIS: A000127). Though the first five terms match the geometric progression 2n − 1, it diverges at n = 6, showing the risk of generalising from only a few observations.

Discussed on