🔗 The Birthday Paradox

🔗 Mathematics 🔗 Statistics

In probability theory, the birthday problem or birthday paradox concerns the probability that, in a set of n randomly chosen people, some pair of them will have the same birthday. By the pigeonhole principle, the probability reaches 100% when the number of people reaches 367 (since there are only 366 possible birthdays, including February 29). However, 99.9% probability is reached with just 70 people, and 50% probability with 23 people. These conclusions are based on the assumption that each day of the year (excluding February 29) is equally probable for a birthday.

Actual birth records show that different numbers of people are born on different days. In this case, it can be shown that the number of people required to reach the 50% threshold is 23 or fewer. For example, if half the people were born on one day and the other half on another day, then any two people would have a 50% chance of sharing a birthday.

It may well seem surprising that a group of just 23 individuals is required to reach a probability of 50% that at least two individuals in the group have the same birthday: this result is perhaps made more plausible by considering that the comparisons of birthday will actually be made between every possible pair of individuals = 23 × 22/2 = 253 comparisons, which is well over half the number of days in a year (183 at most), as opposed to fixing on one individual and comparing his or her birthday to everyone else's. The birthday problem is not a "paradox" in the literal logical sense of being self-contradictory, but is merely unintuitive at first glance.

Real-world applications for the birthday problem include a cryptographic attack called the birthday attack, which uses this probabilistic model to reduce the complexity of finding a collision for a hash function, as well as calculating the approximate risk of a hash collision existing within the hashes of a given size of population.

The history of the problem is obscure. W. W. Rouse Ball indicated (without citation) that it was first discussed by Harold Davenport. However, Richard von Mises proposed an earlier version of what is considered today to be the birthday problem.

Discussed on