Popular Articles

Hint: You are looking at the most popular articles. If you are interested in popular topics instead, click here.

🔗 Wikipedia Has Cancer

Alternative Title: Just because you have some money, that doesn't mean that you have to spend it.

In biology, the hallmarks of an aggressive cancer include limitless multiplication of ordinarily beneficial cells, even when the body signals that further multiplication is no longer needed. The Wikipedia page on the wheat and chessboard problem explains that nothing can keep growing forever. In biology, the unwanted growth usually terminates with the death of the host. Ever-increasing spending can often lead to the same undesirable result in organizations.

Discussed on

🔗 Illegal prime

🔗 Computing 🔗 Mathematics 🔗 Crime 🔗 Cryptography 🔗 Cryptography/Computer science

An illegal prime is a prime number that represents information whose possession or distribution is forbidden in some legal jurisdictions. One of the first illegal primes was found in 2001. When interpreted in a particular way, it describes a computer program that bypasses the digital rights management scheme used on DVDs. Distribution of such a program in the United States is illegal under the Digital Millennium Copyright Act. An illegal prime is a kind of illegal number.

Discussed on

🔗 Timeline of the far future

🔗 Physics 🔗 Lists 🔗 Statistics 🔗 Astronomy 🔗 Time 🔗 Futures studies 🔗 Geology 🔗 Extinction 🔗 Solar System 🔗 Astronomy/Solar System

While the future can never be predicted with absolute certainty, present understanding in various scientific fields allows for the prediction of some far-future events, if only in the broadest outline. These fields include astrophysics, which has revealed how planets and stars form, interact, and die; particle physics, which has revealed how matter behaves at the smallest scales; evolutionary biology, which predicts how life will evolve over time; and plate tectonics, which shows how continents shift over millennia.

All projections of the future of Earth, the Solar System, and the universe must account for the second law of thermodynamics, which states that entropy, or a loss of the energy available to do work, must rise over time. Stars will eventually exhaust their supply of hydrogen fuel and burn out. Close encounters between astronomical objects gravitationally fling planets from their star systems, and star systems from galaxies.

Physicists expect that matter itself will eventually come under the influence of radioactive decay, as even the most stable materials break apart into subatomic particles. Current data suggest that the universe has a flat geometry (or very close to flat), and thus will not collapse in on itself after a finite time, and the infinite future allows for the occurrence of a number of massively improbable events, such as the formation of Boltzmann brains.

The timelines displayed here cover events from the beginning of the 11th millennium to the furthest reaches of future time. A number of alternative future events are listed to account for questions still unresolved, such as whether humans will become extinct, whether protons decay, and whether the Earth survives when the Sun expands to become a red giant.

Discussed on

🔗 Jevons Paradox

🔗 Environment 🔗 Economics

In economics, the Jevons paradox (; sometimes Jevons effect) occurs when technological progress or government policy increases the efficiency with which a resource is used (reducing the amount necessary for any one use), but the rate of consumption of that resource rises due to increasing demand. The Jevons paradox is perhaps the most widely known paradox in environmental economics. However, governments and environmentalists generally assume that efficiency gains will lower resource consumption, ignoring the possibility of the paradox arising.

In 1865, the English economist William Stanley Jevons observed that technological improvements that increased the efficiency of coal-use led to the increased consumption of coal in a wide range of industries. He argued that, contrary to common intuition, technological progress could not be relied upon to reduce fuel consumption.

The issue has been re-examined by modern economists studying consumption rebound effects from improved energy efficiency. In addition to reducing the amount needed for a given use, improved efficiency also lowers the relative cost of using a resource, which increases the quantity demanded. This counteracts (to some extent) the reduction in use from improved efficiency. Additionally, improved efficiency increases real incomes and accelerates economic growth, further increasing the demand for resources. The Jevons paradox occurs when the effect from increased demand predominates, and improved efficiency increases the speed at which resources are used.

Considerable debate exists about the size of the rebound in energy efficiency and the relevance of the Jevons paradox to energy conservation. Some dismiss the paradox, while others worry that it may be self-defeating to pursue sustainability by increasing energy efficiency. Some environmental economists have proposed that efficiency gains be coupled with conservation policies that keep the cost of use the same (or higher) to avoid the Jevons paradox. Conservation policies that increase cost of use (such as cap and trade or green taxes) can be used to control the rebound effect.

Discussed on

🔗 Day of the Programmer

🔗 Computing 🔗 Time

The Day of the Programmer is an international professional day that is celebrated on the 256th (hexadecimal 100th, or the 28th) day of each year (September 13 during common years and on September 12 in leap years). It is officially recognized in Russia.

The number 256 (28) was chosen because it is the number of distinct values that can be represented with a byte, a value well known to programmers. 256 is also the highest power of two that is less than 365, the number of days in a common year.

Discussed on

🔗 Year 2038 Problem

🔗 Computing 🔗 Computing/Software 🔗 Computing/Computer science 🔗 Time

The Year 2038 problem (also called Y2038 or Y2k38 or Unix Y2K) relates to representing time in many digital systems as the number of seconds passed since 00:00:00 UTC on 1 January 1970 and storing it as a signed 32-bit integer. Such implementations cannot encode times after 03:14:07 UTC on 19 January 2038. Similar to the Y2K problem, the Year 2038 problem is caused by insufficient capacity used to represent time.

Discussed on

🔗 Room 641A

🔗 United States/U.S. Government 🔗 United States 🔗 Mass surveillance 🔗 Espionage 🔗 California 🔗 California/San Francisco Bay Area 🔗 Telecommunications

Room 641A is a telecommunication interception facility operated by AT&T for the U.S. National Security Agency, as part of its warrantless surveillance program as authorized by the Patriot Act. The facility commenced operations in 2003 and its purpose was publicly revealed in 2006.

Discussed on

🔗 Boltzmann Brain

🔗 Physics 🔗 Philosophy 🔗 Philosophy/Metaphysics

The Boltzmann brain argument suggests that it is more likely for a single brain to spontaneously and briefly form in a void (complete with a false memory of having existed in our universe) than it is for our universe to have come about in the way modern science thinks it actually did. It was first proposed as a reductio ad absurdum response to Ludwig Boltzmann's early explanation for the low-entropy state of our universe.

In this physics thought experiment, a Boltzmann brain is a fully formed brain, complete with memories of a full human life in our universe, that arises due to extremely rare random fluctuations out of a state of thermodynamic equilibrium. Theoretically over a period of time on the order of hundreds of billions of years, by sheer chance atoms in a void could spontaneously come together in such a way as to assemble a functioning human brain. Like any brain in such circumstances, it would almost immediately stop functioning and begin to deteriorate.

The idea is ironically named after the Austrian physicist Ludwig Boltzmann (1844–1906), who in 1896 published a theory that tried to account for the fact that we find ourselves in a universe that is not as chaotic as the budding field of thermodynamics seemed to predict. He offered several explanations, one of them being that the universe, even one that is fully random (or at thermal equilibrium), would spontaneously fluctuate to a more ordered (or low-entropy) state. One criticism of this "Boltzmann universe" hypothesis is that the most common thermal fluctuations are as close to equilibrium overall as possible; thus, by any reasonable criterion, actual humans in the actual universe would be vastly less likely than "Boltzmann brains" existing alone in an empty universe.

Boltzmann brains gained new relevance around 2002, when some cosmologists started to become concerned that, in many existing theories about the Universe, human brains in the current Universe appear to be vastly outnumbered by Boltzmann brains in the future Universe who, by chance, have exactly the same perceptions that we do; this leads to the conclusion that statistically we ourselves are likely to be Boltzmann brains. Such a reductio ad absurdum argument is sometimes used to argue against certain theories of the Universe. When applied to more recent theories about the multiverse, Boltzmann brain arguments are part of the unsolved measure problem of cosmology. Boltzmann brains remain a thought experiment; physicists do not believe that we are actually Boltzmann brains, but rather use the thought experiment as a tool for evaluating competing scientific theories.

Discussed on

🔗 Inventors killed by their own inventions

🔗 Death 🔗 Lists 🔗 Invention

This is a list of inventors whose deaths were in some manner caused by or related to a product, process, procedure, or other innovation that they invented or designed.

Discussed on

🔗 Buffalo buffalo Buffalo buffalo buffalo buffalo Buffalo buffalo

🔗 Linguistics 🔗 New York (state) 🔗 New York (state)/Western New York

"Buffalo buffalo Buffalo buffalo buffalo buffalo Buffalo buffalo" is a grammatically correct sentence in American English, often presented as an example of how homonyms and homophones can be used to create complicated linguistic constructs through lexical ambiguity. It has been discussed in literature in various forms since 1967, when it appeared in Dmitri Borgmann's Beyond Language: Adventures in Word and Thought.

The sentence employs three distinct meanings of the word buffalo:

  • as a proper noun to refer to a specific place named Buffalo, the city of Buffalo, New York, being the most notable;
  • as a verb (uncommon in regular usage) to buffalo, meaning "to bully, harass, or intimidate" or "to baffle"; and
  • as a noun to refer to the animal, bison (often called buffalo in North America). The plural is also buffalo.

An expanded form of the sentence which preserves the original word order is: "Buffalo bison, that other Buffalo bison bully, also bully Buffalo bison."