Topic: Mathematics (Page 21)
You are looking at all articles with the topic "Mathematics". We found 224 matches.
Hint:
To view all topics, click here. Too see the most popular topics, click here instead.
🔗 The squircle is a shape intermediate between a square and a circle
A squircle is a shape intermediate between a square and a circle. There are at least two definitions of "squircle" in use, the most common of which is based on the superellipse. The word "squircle" is a portmanteau of the words "square" and "circle". Squircles have been applied in design and optics.
Discussed on
- "The squircle is a shape intermediate between a square and a circle" | 2022-04-22 | 13 Upvotes 2 Comments
🔗 Muhammad ibn Musa al-Khwarizmi
Muḥammad ibn Mūsā al-Khwārizmī (Persian: Muḥammad Khwārizmī محمد بن موسی خوارزمی; c. 780 – c. 850), Arabized as al-Khwarizmi with al- and formerly Latinized as Algorithmi, was a Persian polymath who produced works in mathematics, astronomy, and geography. Around 820 CE he was appointed as the astronomer and head of the library of the House of Wisdom in Baghdad.
Al-Khwarizmi's popularizing treatise on algebra (The Compendious Book on Calculation by Completion and Balancing, c. 813–833 CE) presented the first systematic solution of linear and quadratic equations. One of his principal achievements in algebra was his demonstration of how to solve quadratic equations by completing the square, for which he provided geometric justifications. Because he was the first to treat algebra as an independent discipline and introduced the methods of "reduction" and "balancing" (the transposition of subtracted terms to the other side of an equation, that is, the cancellation of like terms on opposite sides of the equation), he has been described as the father or founder of algebra. The term algebra itself comes from the title of his book (specifically the word al-jabr meaning "completion" or "rejoining"). His name gave rise to the terms algorism and algorithm. His name is also the origin of (Spanish) guarismo and of (Portuguese) algarismo, both meaning digit.
In the 12th century, Latin translations of his textbook on arithmetic (Algorithmo de Numero Indorum) which codified the various Indian numerals, introduced the decimal positional number system to the Western world. The Compendious Book on Calculation by Completion and Balancing, translated into Latin by Robert of Chester in 1145, was used until the sixteenth century as the principal mathematical text-book of European universities.
In addition to his best-known works, he revised Ptolemy's Geography, listing the longitudes and latitudes of various cities and localities. He further produced a set of astronomical tables and wrote about calendaric works, as well as the astrolabe and the sundial. He also made important contributions to trigonometry, producing accurate sine and cosine tables, and the first table of tangents.
Discussed on
- "Muhammad ibn Musa al-Khwarizmi" | 2016-04-06 | 14 Upvotes 1 Comments
🔗 Benford's Law: Fraud Detection
Benford's law, also called the Newcomb–Benford law, the law of anomalous numbers, or the first-digit law, is an observation about the frequency distribution of leading digits in many real-life sets of numerical data. The law states that in many naturally occurring collections of numbers, the leading digit is likely to be small. For example, in sets that obey the law, the number 1 appears as the leading significant digit about 30% of the time, while 9 appears as the leading significant digit less than 5% of the time. If the digits were distributed uniformly, they would each occur about 11.1% of the time. Benford's law also makes predictions about the distribution of second digits, third digits, digit combinations, and so on.
The graph to the right shows Benford's law for base 10, one of infinitely many cases of a generalized law regarding numbers expressed in arbitrary (integer) bases, which rules out the possibility that the phenomenon might be an artifact of the base 10 number system. Further generalizations were published by Hill in 1995 including analogous statements for both the nth leading digit as well as the joint distribution of the leading n digits, the latter of which leads to a corollary wherein the significant digits are shown to be a statistically dependent quantity. ).
It has been shown that this result applies to a wide variety of data sets, including electricity bills, street addresses, stock prices, house prices, population numbers, death rates, lengths of rivers, and physical and mathematical constants. Like other general principles about natural data—for example the fact that many data sets are well approximated by a normal distribution—there are illustrative examples and explanations that cover many of the cases where Benford's law applies, though there are many other cases where Benford's law applies that resist a simple explanation. It tends to be most accurate when values are distributed across multiple orders of magnitude, especially if the process generating the numbers is described by a power law (which are common in nature).
The law is named after physicist Frank Benford, who stated it in 1938 in a paper titled "The Law of Anomalous Numbers", although it had been previously stated by Simon Newcomb in 1881.
Discussed on
- "Benford's Law: Fraud Detection" | 2020-11-06 | 13 Upvotes 2 Comments
🔗 Edward Tufte
Edward Rolf Tufte (; born March 14, 1942) is an American statistician and professor emeritus of political science, statistics, and computer science at Yale University. He is noted for his writings on information design and as a pioneer in the field of data visualization.
Discussed on
- "Edward Tufte" | 2009-12-26 | 12 Upvotes 2 Comments
🔗 Gauss–Markov theorem
In statistics, the Gauss–Markov theorem states that the ordinary least squares (OLS) estimator has the lowest sampling variance within the class of linear unbiased estimators, if the errors in the linear regression model are uncorrelated, have equal variances and expectation value of zero. The errors do not need to be normal, nor do they need to be independent and identically distributed (only uncorrelated with mean zero and homoscedastic with finite variance). The requirement that the estimator be unbiased cannot be dropped, since biased estimators exist with lower variance. See, for example, the James–Stein estimator (which also drops linearity) or ridge regression.
The theorem was named after Carl Friedrich Gauss and Andrey Markov, although Gauss' work significantly predates Markov's. But while Gauss derived the result under the assumption of independence and normality, Markov reduced the assumptions to the form stated above. A further generalization to non-spherical errors was given by Alexander Aitken.
🔗 Bellard's Formula
Bellard's formula is used to calculate the nth digit of π in base 16.
Bellard's formula was discovered by Fabrice Bellard in 1997. It is about 43% faster than the Bailey–Borwein–Plouffe formula (discovered in 1995). It has been used in PiHex, the now-completed distributed computing project.
One important application is verifying computations of all digits of pi performed by other means. Rather than having to compute all of the digits twice by two separate algorithms to ensure that a computation is correct, the final digits of a very long all-digits computation can be verified by the much faster Bellard's formula.
Formula:
🔗 Thomas Harriot
Thomas Harriot (Oxford, c. 1560 – London, 2 July 1621), also spelled Harriott, Hariot or Heriot, was an English astronomer, mathematician, ethnographer and translator who made advances within the scientific field. Thomas Harriot was recognized for his contributions in astronomy, mathematics, and navigational techniques. Harriot worked closely with John White to create advanced maps for navigation. While Harriot worked extensively on numerous papers on the subjects of astronomy, mathematics, and navigation the amount of work that was actually published was sparse. So sparse that the only publication that has been produced by Harriot was The Briefe and True Report of the New Found Land of Virginia. The premise of the book includes descriptions of English settlements and financial issues in Virginia at the time. He is sometimes credited with the introduction of the potato to the British Isles. Harriot was the first person to make a drawing of the Moon through a telescope, on 26 July 1609, over four months before Galileo Galilei.
After graduating from St Mary Hall, Oxford, Harriot travelled to the Americas, accompanying the 1585 expedition to Roanoke island funded by Sir Walter Raleigh and led by Sir Ralph Lane. Harriot was a vital member of the venture, having learned and translating the Carolina Algonquian language from two Native Americans: Wanchese and Manteo. On his return to England, he worked for the 9th Earl of Northumberland. At the Earl's house, he became a prolific mathematician and astronomer to whom the theory of refraction is attributed.
Discussed on
- "Thomas Harriot" | 2014-05-25 | 12 Upvotes 2 Comments
🔗 Religious Views of Isaac Newton
Isaac Newton (4 January 1643 – 31 March 1727) was considered an insightful and erudite theologian by his Protestant contemporaries. He wrote many works that would now be classified as occult studies, and he wrote religious tracts that dealt with the literal interpretation of the Bible. He kept his heretical beliefs private.
Newton's conception of the physical world provided a model of the natural world that would reinforce stability and harmony in the civic world. Newton saw a monotheistic God as the masterful creator whose existence could not be denied in the face of the grandeur of all creation. Although born into an Anglican family, and a devout but unorthodox Christian, by his thirties Newton held a Christian faith that, had it been made public, would not have been considered orthodox by mainstream Christians. Scholars now consider him a Nontrinitarian Arian.
He may have been influenced by Socinian christology.
Discussed on
- "Religious Views of Isaac Newton" | 2022-02-11 | 13 Upvotes 1 Comments
🔗 A mathematical proof by an anonymous 4chan user
In combinatorial mathematics, a superpermutation on n symbols is a string that contains each permutation of n symbols as a substring. While trivial superpermutations can simply be made up of every permutation concatenated together, superpermutations can also be shorter (except for the trivial case of n = 1) because overlap is allowed. For instance, in the case of n = 2, the superpermutation 1221 contains all possible permutations (12 and 21), but the shorter string 121 also contains both permutations.
It has been shown that for 1 ≤ n ≤ 5, the smallest superpermutation on n symbols has length 1! + 2! + … + n! (sequence A180632 in the OEIS). The first four smallest superpermutations have respective lengths 1, 3, 9, and 33, forming the strings 1, 121, 123121321, and 123412314231243121342132413214321. However, for n = 5, there are several smallest superpermutations having the length 153. One such superpermutation is shown below, while another of the same length can be obtained by switching all of the fours and fives in the second half of the string (after the bold 2):
123451234152341253412354123145231425314235142315423124531243512431524312543121345213425134215342135421324513241532413524132541321453214352143251432154321
For the cases of n > 5, a smallest superpermutation has not yet been proved nor a pattern to find them, but lower and upper bounds for them have been found.
🔗 List of things named after Carl Friedrich Gauss
Carl Friedrich Gauss (1777–1855) is the eponym of all of the topics listed below. There are over 100 topics all named after this German mathematician and scientist, all in the fields of mathematics, physics, and astronomy. The English eponymous adjective Gaussian is pronounced GOWSS-ee-ən.