Topic: Spaceflight (Page 4)

You are looking at all articles with the topic "Spaceflight". We found 76 matches.

Hint: To view all topics, click here. Too see the most popular topics, click here instead.

πŸ”— Project Highwater

πŸ”— Spaceflight

Project Highwater was an experiment carried out as part of two of the test flights of NASA's Saturn I launch vehicle (using battleship upper stages), successfully launched into a sub-orbital trajectory from Cape Canaveral, Florida. The Highwater experiment sought to determine the effect of a large volume of water suddenly released into the ionosphere. The project answered questions about the effect of the diffusion of propellants in the event that a rocket was destroyed at high altitude.

The first flight, SA-2, took place on April 25, 1962. After the flight test of the rocket was complete and first stage shutdown occurred, explosive charges on the dummy upper stages destroyed the rocket and released 23,000 US gallons (87,000Β L) of ballast water weighing 95 short tons (86,000Β kg) into the upper atmosphere at an altitude of 65 miles (105Β km), eventually reaching an apex of 90 miles (145Β km).

The second flight, SA-3, launched on November 16, 1962, and involved the same payload. The ballast water was explosively released at the flight's peak altitude of 104 miles (167Β km). For both of these experiments, the resulting ice clouds expanded to several miles in diameter and lightning-like radio disturbances were recorded.

Discussed on

πŸ”— StarTram

πŸ”— Spaceflight

StarTram is a proposed space launch system propelled by maglev. The initial Generation 1 facility would launch cargo only, launching from a mountain peak at an altitude of 3 to 7 kilometres (1.9 to 4.3Β mi) with an evacuated tube staying at local surface level; it has been claimed that about 150,000 tons could be lifted to orbit annually. More advanced technology would be required for the Generation 2 system for passengers, with a longer track instead gradually curving up at its end to the thinner air at 22 kilometres (14Β mi) altitude, supported by magnetic levitation, reducing g-forces when each capsule transitions from the vacuum tube to the atmosphere. A SPESIF 2010 presentation stated that Generation 1 could be completed by the year 2020 or later if funding began in 2010, and Generation 2 by 2030 or later.

Discussed on

πŸ”— Black Arrow

πŸ”— Spaceflight πŸ”— Rocketry

Black Arrow, officially capitalised BLACK ARROW, was a British satellite carrier rocket. Developed during the 1960s, it was used for four launches between 1969 and 1971. Its final flight was the first and only successful orbital launch to be conducted by the United Kingdom, and placed the Prospero satellite into low Earth orbit.

Black Arrow originated from studies by the Royal Aircraft Establishment for carrier rockets based on the Black Knight rocket, with the project being authorised in 1964. It was initially developed by Saunders-Roe, and later Westland Aircraft as the result of a merger.

Black Arrow was a three-stage rocket, fuelled by RP-1 paraffin (kerosene) and high test peroxide, a concentrated form of hydrogen peroxide (85% hydrogen peroxide + 15% water). It was retired after only four launches in favour of using American Scout rockets, which the Ministry of Defence calculated to be cheaper than maintaining the Black Arrow programme.

Discussed on

πŸ”— Quantum vacuum plasma thruster

πŸ”— Spaceflight πŸ”— Physics πŸ”— Alternative Views

A quantum vacuum thruster (QVT or Q-thruster) is a theoretical system hypothesized to use the same principles and equations of motion that a conventional plasma thruster would use, namely magnetohydrodynamics (MHD), to make predictions about the behavior of the propellant. However, rather than using a conventional plasma as a propellant, a QVT would interact with quantum vacuum fluctuations of the zero-point field.

The concept is controversial and generally not considered physically possible. However, if QVT systems were possible they could eliminate the need to carry propellant, being limited only by the availability of energy.

Discussed on

πŸ”— MARS-500

πŸ”— Russia πŸ”— Russia/technology and engineering in Russia πŸ”— Spaceflight πŸ”— Europe πŸ”— China πŸ”— Russia/science and education in Russia πŸ”— Europe/ESA πŸ”— Solar System/Mars πŸ”— Solar System

The Mars-500 mission was a psychosocial isolation experiment conducted between 2007 and 2011 by Russia, the European Space Agency and China, in preparation for an unspecified future crewed spaceflight to the planet Mars. The experiment's facility was located at the Russian Academy of Sciences' Institute of Biomedical Problems (IBMP) in Moscow, Russia.

Between 2007 and 2011, three different crews of volunteers lived and worked in a mock-up spacecraft at IBMP. The final stage of the experiment, which was intended to simulate a 520-day crewed mission, was conducted by an all-male crew consisting of three Russians (Alexey Sitev, Sukhrob Kamolov, Alexander Smoleevskij), a Frenchman (Romain Charles), an Italian (Diego Urbina) and a Chinese citizen (Yue Wang). The mock-up facility simulated an Earth-Mars shuttle spacecraft, an ascent-descent craft, and the Martian surface. The volunteers who participated in the three stages included professionals with experience in engineering, medicine, biology, and human spaceflight. The experiment yielded important data on the physiological, social and psychological effects of long-term close-quarters isolation.

Discussed on

πŸ”— The Pioneer Anomaly

πŸ”— Spaceflight πŸ”— Physics πŸ”— Astronomy πŸ”— Solar System

The Pioneer anomaly or Pioneer effect was the observed deviation from predicted accelerations of the Pioneer 10 and Pioneer 11 spacecraft after they passed about 20 astronomical units (3Γ—109Β km; 2Γ—109Β mi) on their trajectories out of the Solar System. The apparent anomaly was a matter of much interest for many years but has been subsequently explained by an anisotropic radiation pressure caused by the spacecraft's heat loss.

Both Pioneer spacecraft are escaping the Solar System but are slowing under the influence of the Sun's gravity. Upon very close examination of navigational data, the spacecraft were found to be slowing slightly more than expected. The effect is an extremely small acceleration towards the Sun, of (8.74Β±1.33)Γ—10βˆ’10Β m/s2, which is equivalent to a reduction of the outbound velocity by 1Β km/h over a period of ten years. The two spacecraft were launched in 1972 and 1973. The anomalous acceleration was first noticed as early as 1980 but not seriously investigated until 1994. The last communication with either spacecraft was in 2003, but analysis of recorded data continues.

Various explanations, both of spacecraft behavior and of gravitation itself, were proposed to explain the anomaly. Over the period from 1998 to 2012, one particular explanation became accepted. The spacecraft, which are surrounded by an ultra-high vacuum and are each powered by a radioisotope thermoelectric generator (RTG), can shed heat only via thermal radiation. If, due to the design of the spacecraft, more heat is emitted in a particular direction by what is known as a radiative anisotropy, then the spacecraft would accelerate slightly in the direction opposite of the excess emitted radiation due to the recoil of thermal photons. If the excess radiation and attendant radiation pressure were pointed in a general direction opposite the Sun, the spacecraft's velocity away from the Sun would be decreasing at a rate greater than could be explained by previously recognized forces, such as gravity and trace friction due to the interplanetary medium (imperfect vacuum).

By 2012 several papers by different groups, all reanalyzing the thermal radiation pressure forces inherent in the spacecraft, showed that a careful accounting of this explains the entire anomaly; thus the cause is mundane and does not point to any new phenomenon or need for a different physical paradigm. The most detailed analysis to date, by some of the original investigators, explicitly looks at two methods of estimating thermal forces, concluding that there is "no statistically significant difference between the two estimates and [...] that once the thermal recoil force is properly accounted for, no anomalous acceleration remains."

Discussed on

πŸ”— Soviet version of the Space Shuttle

πŸ”— Aviation πŸ”— Soviet Union πŸ”— Russia πŸ”— Russia/technology and engineering in Russia πŸ”— Spaceflight πŸ”— Aviation/aircraft project πŸ”— Central Asia

Buran (Russian: Бура́н, IPA:Β [bʊˈran], meaning "Snowstorm" or "Blizzard"; GRAU index serial number: "11F35 K1") was the first spaceplane to be produced as part of the Soviet/Russian Buran programme. It is, depending on the source, also known as "OK-1K1", "Orbiter K1", "OK 1.01" or "Shuttle 1.01". Besides describing the first operational Soviet/Russian shuttle orbiter, "Buran" was also the designation for the entire Soviet/Russian spaceplane project and its orbiters, which were known as "Buran-class spaceplanes".

OK-1K1 completed one uncrewed spaceflight in 1988, and was destroyed in 2002 when the hangar it was stored in collapsed. The Buran-class orbiters used the expendable Energia rocket, a class of super heavy-lift launch vehicle.

Discussed on

πŸ”— Diffractive Solar Sail

πŸ”— Spaceflight

A diffractive solar sail, or diffractive lightsail, is a type of solar sail which relies on diffraction instead of reflection for its propulsion. Current diffractive sail designs use thin metamaterial films, containing micrometer-size gratings based on polarization or subwavelength refractive structures, causing light to spread out (i.e. diffract) and thereby exert radiation pressure when it passes through them.

Discussed on

πŸ”— Vega program

πŸ”— Soviet Union πŸ”— Spaceflight πŸ”— Solar System

The Vega program (Cyrillic: Π’Π΅Π“Π°) was a series of Venus missions that also took advantage of the appearance of comet 1P/Halley in 1986. Vega 1 and Vega 2 were uncrewed spacecraft launched in a cooperative effort among the Soviet Union (who also provided the spacecraft and launch vehicle) and Austria, Bulgaria, France, Hungary, the German Democratic Republic, Poland, Czechoslovakia, and the Federal Republic of Germany in December 1984. They had a two-part mission to investigate Venus and also flyby Halley's Comet.

The flyby of Halley's Comet had been a late mission change in the Venera program following on from the cancellation of the American Halley mission in 1981. A later Venera mission was canceled and the Venus part of the Vega 1 mission was reduced. Because of this, the craft was designated VeGa, a contraction of Venera and Gallei (Π’Π΅Π½Π΅Ρ€Π° and ГаллСя respectively, the Russian words for "Venus" and "Halley"). The spacecraft design was based on the previous Venera 9 and Venera 10 missions.

The two spacecraft were launched on 15 and 21 December 1984, respectively. With their redesignated dual missions, the Vega probes became part of the Halley Armada, a group of space probes that studied Halley's Comet during its 1985/1986 perihelion.

Discussed on

πŸ”— Soviet Space Dogs

πŸ”— Soviet Union πŸ”— Spaceflight πŸ”— Dogs πŸ”— Animal rights

During the 1950s and 1960s the Soviet space program used dogs for sub-orbital and orbital space flights to determine whether human spaceflight was feasible. In this period, the Soviet Union launched missions with passenger slots for at least 57 dogs. The number of dogs in space is smaller, as some dogs flew more than once. Most survived; the few that died were lost mostly through technical failures, according to the parameters of the test.

A notable exception is Laika, the first dog to be sent into orbit, whose death during the 3 November, 1957 Sputnik 2 mission was expected from its outset.

Discussed on