Topic: Physiology
You are looking at all articles with the topic "Physiology". We found 18 matches.
Hint:
To view all topics, click here. Too see the most popular topics, click here instead.
🔗 Eigengrau
Eigengrau (German: "intrinsic gray", lit. "own gray"; pronounced [ˈʔaɪ̯gn̩ˌgʁaʊ̯]), also called Eigenlicht (Dutch and German: "own light"), dark light, or brain gray, is the uniform dark gray background that many people report seeing in the absence of light. The term Eigenlicht dates back to the nineteenth century, but has rarely been used in recent scientific publications. Common scientific terms for the phenomenon include "visual noise" or "background adaptation". These terms arise due to the perception of an ever-changing field of tiny black and white dots seen in the phenomenon.
Eigengrau is perceived as lighter than a black object in normal lighting conditions, because contrast is more important to the visual system than absolute brightness. For example, the night sky looks darker than Eigengrau because of the contrast provided by the stars.
Discussed on
- "Eigengrau" | 2021-07-11 | 73 Upvotes 23 Comments
- "Eigengrau" | 2013-06-23 | 217 Upvotes 68 Comments
🔗 Exploding Head Syndrome
Exploding head syndrome (EHS) is a condition in which a person experiences unreal noises that are loud and of short duration when falling asleep or waking up. The noise may be frightening, typically occurs only occasionally, and is not a serious health concern. People may also experience a flash of light. Pain is typically absent.
The cause is unknown. Potential explanations include ear problems, temporal lobe seizure, nerve dysfunction, or specific genetic changes. Potential risk factors include psychological stress. It is classified as a sleep disorder or headache disorder. People often go undiagnosed.
There is no high quality evidence to support treatment. Reassurance may be sufficient. Clomipramine and calcium channel blockers have been tried. While the frequency of the condition is not well studied, some have estimated that it occurs in about 10% of people. Females are reportedly more commonly affected. The condition was initially described at least as early as 1876. The current name came into use in 1988.
Discussed on
- "Exploding Head Syndrome" | 2023-11-23 | 67 Upvotes 94 Comments
- "Exploding Head Syndrome" | 2020-03-08 | 87 Upvotes 70 Comments
- "Exploding head syndrome. I kid you not." | 2011-12-27 | 19 Upvotes 25 Comments
🔗 Radiotrophic fungus
Radiotrophic fungi are fungi which appear to perform radiosynthesis, that is, to use the pigment melanin to convert gamma radiation into chemical energy for growth. This proposed mechanism may be similar to anabolic pathways for the synthesis of reduced organic carbon (e.g., carbohydrates) in phototrophic organisms, which convert photons from visible light with pigments such as chlorophyll whose energy is then used in photolysis of water to generate usable chemical energy (as ATP) in photophosphorylation or photosynthesis. However, whether melanin-containing fungi employ a similar multi-step pathway as photosynthesis, or some chemosynthesis pathways, is unknown.
Discussed on
- "Radiotrophic fungus" | 2019-07-03 | 262 Upvotes 63 Comments
🔗 Gut–Brain Axis
The gut–brain axis is the two-way biochemical signaling that takes place between the gastrointestinal tract (GI tract) and the central nervous system (CNS). The term "gut–brain axis" is occasionally used to refer to the role of the gut microbiota in the interplay as well. The "microbiota–gut–brain (MGB or BGM) axis" explicitly includes the role of gut microbiota in the biochemical signaling events that take place between the GI tract and the CNS. Broadly defined, the gut–brain axis includes the central nervous system, neuroendocrine system, neuroimmune systems, the hypothalamic–pituitary–adrenal axis (HPA axis), sympathetic and parasympathetic arms of the autonomic nervous system, the enteric nervous system, vagus nerve, and the gut microbiota.
Chemicals released in the gut by the microbiome can vastly influence the development of the brain, starting from birth. A review from 2015 states that the microbiome influences the central nervous system by “regulating brain chemistry and influencing neuro-endocrine systems associated with stress response, anxiety and memory function”. The gut, sometimes referred to as the “second brain”, functions off of the same type of neural network as the central nervous system, suggesting why it plays a significant role in brain function and mental health.
The bidirectional communication is done by immune, endocrine, humoral and neural connections between the gastrointestinal tract and the central nervous system. More research suggests that the gut microorganisms influence the function of the brain by releasing the following chemicals: cytokines, neurotransmitters, neuropeptides, chemokines, endocrine messengers and microbial metabolites such as "short-chain fatty acids, branched chain amino acids, and peptidoglycans”. The intestinal microbiome can then divert these products to the brain via the blood, neuropod cells, nerves, endocrine cells and more to be determined. The products then arrive at important locations in the brain, impacting different metabolic processes. Studies have confirmed communication between the hippocampus, the prefrontal cortex and the amygdala (responsible for emotions and motivation), which acts as a key node in the gut-brain behavioral axis.
While IBS is the only disease confirmed to be directly influenced by the gut microbiome, many disorders (such as anxiety, autism, depression and schizophrenia) have been linked to the gut-brain axis as well. The impact of the axis, and the various ways in which one can influence it, remains a promising research field which could result in future treatments for psychiatric, age-related, neurodegenerative and neurodevelopmental disorders. For example, according to a study from 2017, “probiotics have the ability to restore normal microbial balance, and therefore have a potential role in the treatment and prevention of anxiety and depression”.
The first of the brain–gut interactions shown, was the cephalic phase of digestion, in the release of gastric and pancreatic secretions in response to sensory signals, such as the smell and sight of food. This was first demonstrated by Pavlov through Nobel prize winning research in 1904.
Scientific interest in the field had already led to review in the second half of the 20th century. It was promoted further by a 2004 primary research study showing that germ-free (GF) mice showed an exaggerated HPA axis response to stress compared to non-GF laboratory mice.
As of October 2016, most of the work done on the role of gut microbiota in the gut–brain axis had been conducted in animals, or on characterizing the various neuroactive compounds that gut microbiota can produce. Studies with humans – measuring variations in gut microbiota between people with various psychiatric and neurological conditions or when stressed, or measuring effects of various probiotics (dubbed "psychobiotics" in this context) – had generally been small and were just beginning to be generalized. Whether changes to the gut microbiota are a result of disease, a cause of disease, or both in any number of possible feedback loops in the gut–brain axis, remained unclear.
Discussed on
- "Gut–Brain Axis" | 2023-06-25 | 160 Upvotes 54 Comments
🔗 Peto's Paradox
Peto's paradox is an observation that at the species level, the incidence of cancer does not appear to correlate with the number of cells in an organism. For example, the incidence of cancer in humans is much higher than the incidence of cancer in whales, despite whales having more cells than humans. If the probability of carcinogenesis were constant across cells, one would expect whales to have a higher incidence of cancer than humans. Peto's paradox is named after English statistician and epidemiologist Richard Peto, who first observed the connection.
Discussed on
- "Peto's Paradox" | 2022-11-05 | 142 Upvotes 68 Comments
🔗 Gunslinger Effect
The gunslinger effect, also sometimes called Bohr's law or the gunfighter's dilemma, is a psychophysical theory which says that an intentional or willed movement is slower than an automatic or reaction movement. The concept is named after physicist Niels Bohr, who first deduced that the person who draws second in a gunfight will actually win the shoot-out.
Discussed on
- "Gunslinger Effect" | 2022-07-02 | 138 Upvotes 44 Comments
🔗 Liquid Breathing
Liquid breathing is a form of respiration in which a normally air-breathing organism breathes an oxygen-rich liquid (such as a perfluorocarbon), rather than breathing air.
This requires certain physical properties such as respiratory gas solubility, density, viscosity, vapor pressure, and lipid solubility which some, but not all, perfluorochemicals (perfluorocarbon) have. Thus, it is critical to choose the appropriate PFC for a specific biomedical application, such as liquid ventilation, drug delivery or blood substitutes. The physical properties of PFC liquids vary substantially; however, the one common property is their high solubility for respiratory gases. In fact, these liquids carry more oxygen and carbon dioxide than blood.
In theory, liquid breathing could assist in the treatment of patients with severe pulmonary or cardiac trauma, especially in pediatric cases. Liquid breathing has also been proposed for use in deep diving and space travel. Despite some recent advances in liquid ventilation, a standard mode of application has not yet been established.
Discussed on
- "Liquid Breathing" | 2021-04-08 | 19 Upvotes 3 Comments
- "Liquid Breathing" | 2015-06-22 | 12 Upvotes 19 Comments
- "Liquid breathing" | 2010-12-20 | 37 Upvotes 5 Comments
- "Liquid breathing" | 2009-09-28 | 18 Upvotes 4 Comments
🔗 Mammalian diving reflex
The diving reflex, also known as the diving response and mammalian diving reflex, is a set of physiological responses to immersion that overrides the basic homeostatic reflexes, and is found in all air-breathing vertebrates studied to date. It optimizes respiration by preferentially distributing oxygen stores to the heart and brain, enabling submersion for an extended time.
The diving reflex is exhibited strongly in aquatic mammals, such as seals, otters, dolphins, and muskrats, and exists as a lesser response in other animals, including adult humans, babies up to 6 months old (see infant swimming), and diving birds, such as ducks and penguins.
The diving reflex is triggered specifically by chilling and wetting the nostrils and face while breath-holding, and is sustained via neural processing originating in the carotid chemoreceptors. The most noticeable effects are on the cardiovascular system, which displays peripheral vasoconstriction, slowed heart rate, redirection of blood to the vital organs to conserve oxygen, release of red blood cells stored in the spleen, and, in humans, heart rhythm irregularities. Although aquatic animals have evolved profound physiological adaptations to conserve oxygen during submersion, the apnea and its duration, bradycardia, vasoconstriction, and redistribution of cardiac output occur also in terrestrial animals as a neural response, but the effects are more profound in natural divers.
Discussed on
- "Mammalian diving reflex" | 2016-03-27 | 73 Upvotes 29 Comments
🔗 Amygdala hijack
An amygdala hijack refers to a personal, emotional response that is immediate, overwhelming, and out of measure with the actual stimulus because it has triggered a much more significant emotional threat. The term was coined by Daniel Goleman in his 1996 book Emotional Intelligence: Why It Can Matter More Than IQ.
Discussed on
- "Amygdala hijack" | 2021-05-11 | 61 Upvotes 20 Comments
🔗 Polyphasic Sleep
Biphasic sleep (or diphasic, bimodal or bifurcated sleep) is the practice of sleeping during two periods over the course of 24 hours, while polyphasic sleep refers to sleeping multiple times – usually more than two. Each of these is in contrast to monophasic sleep, which is one period of sleep within 24 hours. Segmented sleep and divided sleep may refer to polyphasic or biphasic sleep, but may also refer to interrupted sleep, where the sleep has one or several shorter periods of wakefulness. A common form of biphasic or polyphasic sleep includes a nap, which is a short period of sleep, typically taken between the hours of 9 am and 9 pm as an adjunct to the usual nocturnal sleep period. Nowadays, the definition of polyphasic sleep is any sleep schedule with at least two sleeps per day, to distinguish it from monophasic sleep, which only has one sleep per day.
The term polyphasic sleep was first used in the early 20th century by psychologist J. S. Szymanski, who observed daily fluctuations in activity patterns (see Stampi 1992). It does not imply any particular sleep schedule. The circadian rhythm disorder known as irregular sleep-wake syndrome is an example of polyphasic sleep in humans. Polyphasic sleep is common in many animals, and is believed to be the ancestral sleep state for mammals, although simians are monophasic.
The term polyphasic sleep is also used by an online community that experiments with alternative sleeping schedules to achieve more time awake each day. However, researchers such as Piotr Woźniak warn that such forms of sleep deprivation are not healthy. While many claim that polyphasic sleep was widely used by some polymaths and prominent people such as Leonardo da Vinci, Napoleon, and Nikola Tesla, there are few reliable sources supporting that view.
Discussed on
- "Polyphasic Sleep" | 2013-08-22 | 32 Upvotes 44 Comments