Random Articles (Page 6)

Have a deep view into what people are curious about.

πŸ”— Sussman anomaly

πŸ”— Cognitive science

The Sussman anomaly is a problem in artificial intelligence, first described by Gerald Sussman, that illustrates a weakness of noninterleaved planning algorithms, which were prominent in the early 1970s. In the problem, three blocks (labeled A, B, and C) rest on a table. The agent must stack the blocks such that A is atop B, which in turn is atop C. However, it may only move one block at a time. The problem starts with B on the table, C atop A, and A on the table:

However, noninterleaved planners typically separate the goal (stack A atop B atop C) into subgoals, such as:

  1. get A atop B
  2. get B atop C

Suppose the planner starts by pursuing Goal 1. The straightforward solution is to move C out of the way, then move A atop B. But while this sequence accomplishes Goal 1, the agent cannot now pursue Goal 2 without undoing Goal 1, since both A and B must be moved atop C:

If instead the planner starts with Goal 2, the most efficient solution is to move B. But again, the planner cannot pursue Goal 1 without undoing Goal 2:

The problem was first identified by Sussman as a part of his PhD research. Sussman (and his supervisor, Marvin Minsky) believed that intelligence requires a list of exceptions or tricks, and developed a modular planning system for "debugging" plans. Most modern planning systems can handle this anomaly, but it is still useful for explaining why planning is non-trivial.

Discussed on

πŸ”— Lace Card

πŸ”— Computing

A lace card is a punched card with all holes punched (also called a whoopee card, ventilator card, flyswatter card, or IBM doily). They were mainly used as practical jokes to cause disruption in card readers. Card readers tended to jam when a lace card was inserted, as the resulting card had too little structural strength to avoid buckling inside the mechanism. Card punches could also jam trying to produce cards with all holes punched, owing to power-supply problems. When a lace card was fed through the reader, a card knife or card saw (a flat tool used with punched card readers and card punches) was needed to clear the jam.

Discussed on

πŸ”— Mars Curiosity Operating System: VxWorks

πŸ”— Robotics πŸ”— Software πŸ”— Software/Computing

VxWorks is a real-time operating system (RTOS) developed as proprietary software by Wind River Systems, a wholly owned subsidiary of TPG Capital, US. First released in 1987, VxWorks is designed for use in embedded systems requiring real-time, deterministic performance and, in many cases, safety and security certification, for industries, such as aerospace and defense, medical devices, industrial equipment, robotics, energy, transportation, network infrastructure, automotive, and consumer electronics.

VxWorks supports Intel architecture, POWER architecture, ARM architectures and RISC-V. The RTOS can be used in multicore asymmetric multiprocessing (AMP), symmetric multiprocessing (SMP), and mixed modes and multi-OS (via Type 1 hypervisor) designs on 32- and 64-bit processors.

VxWorks comes with the kernel, middleware, board support packages, Wind River Workbench development suite and complementary third-party software and hardware technologies. In its latest release, VxWorks 7, the RTOS has been re-engineered for modularity and upgradeability so the OS kernel is separate from middleware, applications and other packages. Scalability, security, safety, connectivity, and graphics have been improved to address Internet of Things (IoT) needs.

Discussed on

πŸ”— Pink Noise

πŸ”— Physics πŸ”— Electronics πŸ”— Professional sound production

Pink noise or ​1⁄f noise is a signal or process with a frequency spectrum such that the power spectral density (energy or power per frequency interval) is inversely proportional to the frequency of the signal. In pink noise, each octave (halving or doubling in frequency) carries an equal amount of noise energy.

Pink noise is one of the most common signals in biological systems.

The name arises from the pink appearance of visible light with this power spectrum. This is in contrast with white noise which has equal intensity per frequency interval.

Discussed on

πŸ”— Lockout-Tagout

πŸ”— Occupational Safety and Health

Lock Out, Tag Out (LOTO), Lock Out, Tag Out, Try Out (LOTOTO) or lock and tag is a safety procedure used in industry and research settings to ensure that dangerous machines are properly shut off and not able to be started up again prior to the completion of maintenance or repair work. It requires that hazardous energy sources be "isolated and rendered inoperative" before work is started on the equipment in question. The isolated power sources are then locked and a tag is placed on the lock identifying the worker who placed it. The worker then holds the key for the lock, ensuring that only he or she can remove the lock and start the machine. This prevents accidental startup of a machine while it is in a hazardous state or while a worker is in direct contact with it.

Lockout-tagout is used across industries as a safe method of working on hazardous equipment and is mandated by law in some countries.

Discussed on

πŸ”— MD6 Message-Digest Algorithm

πŸ”— Cryptography πŸ”— Cryptography/Computer science

The MD6 Message-Digest Algorithm is a cryptographic hash function. It uses a Merkle tree-like structure to allow for immense parallel computation of hashes for very long inputs. Authors claim a performance of 28 cycles per byte for MD6-256 on an Intel Core 2 Duo and provable resistance against differential cryptanalysis. The source code of the reference implementation was released under MIT license.

Speeds in excess of 1 GB/s have been reported to be possible for long messages on 16-core CPU architecture.

In December 2008, Douglas Held of Fortify Software discovered a buffer overflow in the original MD6 hash algorithm's reference implementation. This error was later made public by Ron Rivest on 19 February 2009, with a release of a corrected reference implementation in advance of the Fortify Report.

MD6 was submitted to the NIST SHA-3 competition. However, on July 1, 2009, Rivest posted a comment at NIST that MD6 is not yet ready to be a candidate for SHA-3 because of speed issues, a "gap in the proof that the submitted version of MD6 is resistant to differential attacks", and an inability to supply such a proof for a faster reduced-round version, although Rivest also stated at the MD6 website that it is not withdrawn formally. MD6 did not advance to the second round of the SHA-3 competition. In September 2011, a paper presenting an improved proof that MD6 and faster reduced-round versions are resistant to differential attacks was posted to the MD6 website.

Discussed on

πŸ”— Tendril perversion – spontaneous symmetry breaking, uncoiling helical structures

πŸ”— Mathematics πŸ”— Biology πŸ”— Physics πŸ”— Plants

Tendril perversion, often referred to in context as simply perversion, is a geometric phenomenon found in helical structures such as plant tendrils, in which a helical structure forms that is divided into two sections of opposite chirality, with a transition between the two in the middle. A similar phenomenon can often be observed in kinked helical cables such as telephone handset cords.

The phenomenon was known to Charles Darwin, who wrote in 1865,

A tendril ... invariably becomes twisted in one part in one direction, and in another part in the opposite direction... This curious and symmetrical structure has been noticed by several botanists, but has not been sufficiently explained.

The term "tendril perversion" was coined by Goriely and Tabor in 1998 based on the word perversion found in the 19th Century science literature. "Perversion" is a transition from one chirality to another and was known to James Clerk Maxwell, who attributed it to the topologist J. B. Listing.

Tendril perversion can be viewed as an example of spontaneous symmetry breaking, in which the strained structure of the tendril adopts a configuration of minimum energy while preserving zero overall twist.

Tendril perversion has been studied both experimentally and theoretically. Gerbode et al. have made experimental studies of the coiling of cucumber tendrils. A detailed study of a simple model of the physics of tendril perversion was made by MacMillen and Goriely in the early 2000s. Liu et al. showed in 2014 that "the transition from a helical to a hemihelical shape, as well as the number of perversions, depends on the height to width ratio of the strip's cross-section."

Generalized tendril perversions were put forward by Silva et al., to include perversions that can be intrinsically produced in elastic filaments, leading to a multiplicity of geometries and dynamical properties.

πŸ”— Isotype picture language

πŸ”— Constructed languages πŸ”— Graphic design

Isotype (International System of Typographic Picture Education) is a method of showing social, technological, biological, and historical connections in pictorial form. It consists of a set of standardized and abstracted pictorial symbols to represent social-scientific data with specific guidelines on how to combine the identical figures using serial repetition. It was first known as the Vienna Method of Pictorial Statistics (Wiener Methode der Bildstatistik), due to its having been developed at the Gesellschafts- und Wirtschaftsmuseum in Wien (Social and Economic Museum of Vienna) between 1925 and 1934. The founding director of this museum, Otto Neurath, was the initiator and chief theorist of the Vienna Method. Gerd Arntz was the artist responsible for realising the graphics. The term Isotype was applied to the method around 1935, after its key practitioners were forced to leave Vienna by the rise of Austrian fascism.

Discussed on

πŸ”— Sokoban

πŸ”— Video games

Sokoban (倉庫η•ͺ, Sōko-ban, lit. 'warehouse keeper') is a puzzle video game in which the player pushes boxes around in a warehouse, trying to get them to storage locations. The game was designed in 1981 by Hiroyuki Imabayashi, and first released in December 1982 for the PC-80, PC-88, and FM-7 computers.

Discussed on

πŸ”— Barnum effect

πŸ”— Skepticism πŸ”— Psychology

The Barnum effect, also called the Forer effect, or less commonly, the Barnum-Forer effect, is a common psychological phenomenon whereby individuals give high accuracy ratings to descriptions of their personality that supposedly are tailored specifically to them, that are in fact vague and general enough to apply to a wide range of people. This effect can provide a partial explanation for the widespread acceptance of some paranormal beliefs and practices, such as astrology, fortune telling, aura reading, and some types of personality tests.

These characterizations are often used by practitioners as a con-technique to convince victims that they are endowed with a paranormal gift. Because the assessment statements are so vague, people interpret their own meaning, thus the statement becomes "personal" to them. Also, individuals are more likely to accept negative assessments of themselves if they perceive the person presenting the assessment as a high-status professional.

The term "Barnum effect" was coined in 1956 by psychologist Paul Meehl in his essay Wanted – A Good Cookbook, because he relates the vague personality descriptions used in certain "pseudo-successful" psychological tests to those given by showman P. T. Barnum.

Discussed on