Topic: Evolutionary biology (Page 2)
You are looking at all articles with the topic "Evolutionary biology". We found 18 matches.
Hint:
To view all topics, click here. Too see the most popular topics, click here instead.
π Horizontal Gene Transfer
Horizontal gene transfer (HGT) or lateral gene transfer (LGT) is the movement of genetic material between unicellular and/or multicellular organisms other than by the ("vertical") transmission of DNA from parent to offspring (reproduction). HGT is an important factor in the evolution of many organisms.
Horizontal gene transfer is the primary mechanism for the spread of antibiotic resistance in bacteria, and plays an important role in the evolution of bacteria that can degrade novel compounds such as human-created pesticides and in the evolution, maintenance, and transmission of virulence. It often involves temperate bacteriophages and plasmids. Genes responsible for antibiotic resistance in one species of bacteria can be transferred to another species of bacteria through various mechanisms of HGT such as transformation, transduction and conjugation, subsequently arming the antibiotic resistant genes' recipient against antibiotics. The rapid spread of antibiotic resistance genes in this manner is becoming medically challenging to deal with. Ecological factors may also play a role in the LGT of antibiotic resistant genes. It is also postulated that HGT promotes the maintenance of a universal life biochemistry and, subsequently, the universality of the genetic code.
Most thinking in genetics has focused upon vertical transfer, but the importance of horizontal gene transfer among single-cell organisms is beginning to be acknowledged.
Gene delivery can be seen as an artificial horizontal gene transfer, and is a form of genetic engineering.
Discussed on
- "Horizontal gene transfer" | 2014-04-29 | 14 Upvotes 1 Comments
π Biology and political orientation
A number of studies have found that biology can be linked with political orientation. This means that biology is a possible factor in political orientation but may also mean that the ideology a person identifies with changes a person's ability to perform certain tasks. Many of the studies linking biology to politics remain controversial and unreplicated, although the overall body of evidence is growing.
Discussed on
- "Biology and political orientation" | 2020-04-27 | 17 Upvotes 4 Comments
π R/K selection theory
In ecology, r/K selection theory relates to the selection of combinations of traits in an organism that trade off between quantity and quality of offspring. The focus on either an increased quantity of offspring at the expense of individual parental investment of r-strategists, or on a reduced quantity of offspring with a corresponding increased parental investment of K-strategists, varies widely, seemingly to promote success in particular environments.
The terminology of r/K-selection was coined by the ecologists Robert MacArthur and E. O. Wilson in 1967 based on their work on island biogeography; although the concept of the evolution of life history strategies has a longer history (see e.g. plant strategies).
The theory was popular in the 1970s and 1980s, when it was used as a heuristic device, but lost importance in the early 1990s, when it was criticized by several empirical studies. A life-history paradigm has replaced the r/K selection paradigm but continues to incorporate many of its important themes.
Discussed on
- "R/K selection theory" | 2014-03-31 | 17 Upvotes 3 Comments
π Evolution of metal ions in biological systems
Evolution of metal ions in biological systems refers to the incorporation of metallic ions into living organisms and how it has changed over time. Metal ions have been associated with biological systems for billions of years, but only in the last century have scientists began to truly appreciate the scale of their influence. Major (iron, manganese, magnesium and zinc) and minor (copper, cobalt, nickel, molybdenum, tungsten) metal ions have become aligned with living organisms through the interplay of biogeochemical weathering and metabolic pathways involving the products of that weathering. The associated complexes have evolved over time.
Natural development of chemicals and elements challenged organisms to adapt or die. Current organisms require redox reactions to induce metabolism and other life processes. Metals have a tendency to lose electrons and are important for redox reactions.
Metals have become so central to cellular function that the collection of metal-binding proteins (referred to as the metallomes) accounts for over 30% of all proteins in the cell. Metals are known to be involved in over 40% of enzymatic reactions, and metal-binding proteins carry out at least one step in almost all biological pathways.
Metals are also toxic so a balance must be acquired to regulate where the metals are in an organism as well as in what quantities. Many organisms have flexible systems in which they can exchange one metal for another if one is scarce. Metals in this discussion are naturally occurring elements that have a tendency to undergo oxidation. Vanadium, molybdenum, cobalt, copper, chromium, iron, manganese, nickel, and zinc are deemed essential because without them biological function is impaired.
π Homo floresiensis
Homo floresiensis ("Flores Man"; nicknamed "hobbit") is a pygmy archaic human which inhabited the island of Flores, Indonesia, until the arrival of modern humans about 50,000 years ago.
The remains of an individual who would have stood about 1.1Β m (3Β ft 7Β in) in height were discovered in 2003 at Liang Bua on the island of Flores in Indonesia. Partial skeletons of nine individuals have been recovered, including one complete skull, referred to as "LB1". These remains have been the subject of intense research to determine whether they represent a species distinct from modern humans; the dominant consensus is that these remains do represent a distinct species due to genetic and anatomical differences.
This hominin had originally been considered remarkable for its survival until relatively recent times, only 12,000 years ago. However, more extensive stratigraphic and chronological work has pushed the dating of the most recent evidence of its existence back to 50,000 years ago. The Homo floresiensis skeletal material is now dated from 60,000 to 100,000 years ago; stone tools recovered alongside the skeletal remains were from archaeological horizons ranging from 50,000 to 190,000 years ago.
Discussed on
- "Homo floresiensis" | 2013-10-14 | 12 Upvotes 3 Comments
π Conservation-Induced Extinction
Conservation-induced extinction is where efforts to save endangered species lead to the extinction of other species. This mostly threatens the parasite and pathogen species that are highly host-specific to critically endangered hosts. When the last individuals of a host species are captured for the purpose of captive breeding and reintroduction programs, they typically undergo anti-parasitic treatments to increase survival and reproductive success. This practice may unintentionally result in the extinction of the species antagonistic to the target species, such as certain parasites. It has been proposed that the parasites should be reintroduced to the endangered population. A few cases of conservation-induced extinction have occurred in parasitic lice.
Discussed on
- "Conservation-Induced Extinction" | 2024-07-26 | 13 Upvotes 2 Comments
π Wikipedia tests a new UI design
Evolution is change in the heritable characteristics of biological populations over successive generations. These characteristics are the expressions of genes that are passed on from parent to offspring during reproduction. Different characteristics tend to exist within any given population as a result of mutation, genetic recombination and other sources of genetic variation. Evolution occurs when evolutionary processes such as natural selection (including sexual selection) and genetic drift act on this variation, resulting in certain characteristics becoming more common or rare within a population. The evolutionary pressures that determine whether a characteristic would be common or rare within a population constantly change, resulting in a change in heritable characteristics arising over successive generations. It is this process of evolution that has given rise to biodiversity at every level of biological organisation, including the levels of species, individual organisms and molecules.
The theory of evolution by natural selection was conceived independently by Charles Darwin and Alfred Russel Wallace in the mid-19th century and was set out in detail in Darwin's book On the Origin of Species. Evolution by natural selection was first demonstrated by the observation that more offspring are often produced than can possibly survive. This is followed by three observable facts about living organisms: (1) traits vary among individuals with respect to their morphology, physiology and behaviour (phenotypic variation), (2) different traits confer different rates of survival and reproduction (differential fitness) and (3) traits can be passed from generation to generation (heritability of fitness). Thus, in successive generations members of a population are more likely to be replaced by the progenies of parents with favourable characteristics that have enabled them to survive and reproduce in their respective environments. In the early 20th century, other competing ideas of evolution such as mutationism and orthogenesis were refuted as the modern synthesis reconciled Darwinian evolution with classical genetics, which established adaptive evolution as being caused by natural selection acting on Mendelian genetic variation.
All life on Earth shares a last universal common ancestor (LUCA) that lived approximately 3.5β3.8Β billion years ago. The fossil record includes a progression from early biogenic graphite, to microbial mat fossils, to fossilised multicellular organisms. Existing patterns of biodiversity have been shaped by repeated formations of new species (speciation), changes within species (anagenesis) and loss of species (extinction) throughout the evolutionary history of life on Earth. Morphological and biochemical traits are more similar among species that share a more recent common ancestor, and can be used to reconstruct phylogenetic trees.
Evolutionary biologists have continued to study various aspects of evolution by forming and testing hypotheses as well as constructing theories based on evidence from the field or laboratory and on data generated by the methods of mathematical and theoretical biology. Their discoveries have influenced not just the development of biology but numerous other scientific and industrial fields, including agriculture, medicine, and computer science.
Discussed on
- "Wikipedia tests a new UI design" | 2022-08-26 | 11 Upvotes 3 Comments
π Eigen's Paradox
In evolutionary biology and population genetics, the error threshold (or critical mutation rate) is a limit on the number of base pairs a self-replicating molecule may have before mutation will destroy the information in subsequent generations of the molecule. The error threshold is crucial to understanding "Eigen's paradox".
The error threshold is a concept in the origins of life (abiogenesis), in particular of very early life, before the advent of DNA. It is postulated that the first self-replicating molecules might have been small ribozyme-like RNA molecules. These molecules consist of strings of base pairs or "digits", and their order is a code that directs how the molecule interacts with its environment. All replication is subject to mutation error. During the replication process, each digit has a certain probability of being replaced by some other digit, which changes the way the molecule interacts with its environment, and may increase or decrease its fitness, or ability to reproduce, in that environment.
Discussed on
- "Eigen's Paradox" | 2024-02-15 | 10 Upvotes 1 Comments